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Key role of planted and harvested area 
fluctuations in US crop production shocks

Dongyang Wei    1 , Jessica A. Gephart    2, Toshichika Iizumi    3, 
Navin Ramankutty    4 & Kyle Frankel Davis    1,5

Food production stability against climate variability and extremes is crucial 
for food security and is influenced by variations in planted area, harvested 
area and yield. Yet research has focused on yield responses to climate 
fluctuations, ignoring how planted area and harvestable fraction (that 
is, the ratio of planted area to harvested area) affect production stability. 
Here we apply a time series shock detection approach to county-level data 
(1978–2020) on seven crops in the United States, finding that shocks (that 
is, sudden statistically significant declines) in planted area and harvestable 
fraction co-occur with 51–81% of production shocks, depending on the 
crop. Decomposing production shock magnitudes, we find that yield 
fluctuations contribute more for corn (59%), cotton (49%), soybean (64%) 
and winter wheat (40%), whereas planted area and harvestable fraction 
have a greater role for others. Additionally, climatic variables explain 
considerable portions of the variance in planted area (22–30%), harvestable 
fraction (15–28%) and yield (32–50%). These findings demonstrate that crop 
production shocks are often associated with fluctuations in planted area 
and harvestable fraction. This highlights the (largely ignored) importance 
of producer decision-making about cropping patterns in stabilizing food 
production against climate variability and emphasizes the need to consider 
all three production components to improve food system stability.

Many countries are facing growing levels of food insecurity, with 193 
million people acutely food insecure worldwide1. To achieve the United 
Nations’ Sustainable Development Goal of Zero Hunger (SDG2) by 
2030, urgent action is needed to ensure food security in all aspects. 
Least studied among the four food security pillars (availability, access, 
use and stability) is food stability, which refers to the ability of an indi-
vidual, household or population to have reliable access to adequate, 
safe and nutritious food2–4. While stability can be affected at any step 
in the food supply chain, the largest number of disruption entry points 
are found at the production stage5. Food production shocks (that is, 
sudden and unexpected losses in production) can be caused by a wide 
variety of factors, including climate variability, extreme weather events 

and economic and political disruptions6–8. With increasing climate 
variability9 and climate extremes expected to become more frequent, 
intense and prolonged10–12, it is critical to understand the pathways 
through which environmental shocks impact production to develop 
more effective strategies for stabilizing crop production.

Food production instability (that is, the occurrence and mag-
nitude of year-to-year variability for a certain period) is determined 
by variability and shocks in planted area, harvestable fraction (that 
is, the ratio between planted and harvested area) and yield (Box 1), 
each involving varying degrees of human decision-making. Changes 
in planted area are determined mainly by farmer decisions before the 
growing season based on economic, policy and climatic conditions13,14. 
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current crop production practices and can better inform strategies for 
adapting crop production to increasingly variable and extreme climate 
and other natural and human-made disruptions.

In this study, we focused on crop production shocks in the United 
States, the world’s largest producer and exporter of cereal grains27. 
Because of its important role in the global food system, understand-
ing the components that most contribute to US production shocks 
can improve strategies to ensure stable and reliable crop production 
and better protect national and global food supplies. To this end, 
we investigated how variations in planted area, harvestable fraction 
and yield contribute to US crop production shocks and the extent to 
which these three components are affected by climate variability and 
extremes. We first assembled 43 years (1978–2020) of county-level 
agricultural data for seven major crops (barley, corn, cotton, sorghum, 
soybean, spring wheat and winter wheat), which account for 70% of US 
cropland28. We then detected shocks (that is, sudden and statistically 
significant decreases) in production and its components—planted 
area, harvestable fraction and yield—using an automated quantitative 
statistical method that captures sudden changes in time series while 
ignoring long-term gradual fluctuations29. Through this approach, we 
quantified the number of years with production shocks (frequency) 
and estimated their co-occurrence with shocks in each of the three 
components. We then used a decomposition approach to investigate 
to what extent each of the three components contributes to the magni-
tude of production shocks30. Finally, we built random forest regression 
models to determine to what extent interannual variations in produc-
tion and its three components are explained by climate variability and 
extremes. Together, these lines of investigation can provide valuable 
insights beyond the role of yield in influencing production stability and 
can serve as a basis for expanding the option space for interventions 
to address climate-related crop production losses.

Production shock frequency
Using an automated quantitative statistical shock detection method29, 
we detected instances of negative deviations of production (hereaf-
ter, production shocks) ranging from 449 total negative shocks (for 
spring wheat) to 2,532 shocks (for corn) in all counties between 1978 and 
2020 (shock can only be detected from the second year), the years for 
which data were available for all study crops. Production shocks varied 
both spatially and temporally between crops (Fig. 1). Production shock 
frequency has increased significantly for corn, cotton and soybean 
(P < 0.05, two-tailed Mann–Kendall test), with no significant trends in 
shock frequency being observed for all other study crops. In terms of 
geographical heterogeneity, we observed higher shock frequencies in 
Iowa, Illinois and Missouri for corn, soybean and winter wheat, and in 
North Dakota for barley and spring wheat (Fig. 1).

We then compared the co-occurrence of production shocks with 
shocks in each of the three components of production. We found that 
more than half of the production shocks for six of the seven study 
crops (barley, corn, cotton, sorghum, winter wheat and spring wheat) 
co-occurred with shocks of area-related components (Fig. 2 and Sup-
plementary Fig. 1). Conversely, for soybean, the association with 
yield shocks dominates, co-occurring with 65% of production shocks. 
Across all seven crops, shocks related to planted area co-occurred with 
between 33% and 53% of production shocks, whereas shocks associated 
with harvestable fraction co-occurred with between 19% and 43% of 
production shocks. We found that between 17% and 31% of production 
shocks were associated with a combination of yield and area-related 
shocks, highlighting the fact that these components of production are 
not entirely independent of one another, depending on the nature of 
the disruption. We also compared shock outcomes between rain-fed 
and irrigated conditions across three crops—corn, winter wheat and 
soybean—for which there were sufficient data from 1978 to 2018 
(Supplementary Fig. 2). Not surprisingly, we found that shocks of 
area-related components co-occur more often with production shocks 

Conversely, harvestable fraction (that is, the portion of planted area 
that is harvestable rather than lost within-season) is influenced by 
exogenous natural forces—such as climate extremes—and to some 
extent farmer decisions. Flooding, for example, can cause a portion 
of a field to be washed away, thereby reducing the harvested area but 
leaving yield unaffected15. Farmers may also decide not to harvest 
their crops—perhaps due to low yields, inferior quality or low market 
prices—because the expected low revenue would not justify their time 
and effort16,17. For yield, changes are jointly dictated by within-season 
management decisions (for example, irrigation, varietal choice) and 
environmental conditions (for example, heatwave, drought and pests). 
Yet while all three of these components (planted area, harvestable 
fraction and yield) can influence production outcomes, most research 
on production instability to date has focused on the role of yield vari-
ations7,18–23. However, there are emerging efforts to understand how 
the different components of production contribute to its stability. For 
instance, some studies showed that production losses were associated 
with both harvested area and yield24,25. Other work in Brazil showed that 
harvested area and cropping frequency were more sensitive to climate 
variability than yield26. While these few studies suggest the importance 
of other non-yield components for determining production outcomes, 
the extent to which all three components of production (planted area, 
harvestable fraction and yield) influence stability across different crops 
and regions is unknown14. Improving our understanding beyond yield 
variations can provide a more complete picture of the vulnerabilities of 

Box 1

Production outcomes of 
component shocks
Crop production is calculated as the product of yield and harvested 
area. Harvested area can be further separated into planted 
area × harvestable fraction (calculated as the ratio of harvested to 
planted area). Each of these components can suffer a sudden loss 
independent of the other but still have the same consequences 
for production outcomes, as shown in the illustration below. In the 
first scenario, a smaller amount of area is planted compared to the 
other two scenarios, but there are no shocks to harvestable fraction 
or yield. In the second scenario, only half of the planted area is 
harvestable but yield is unaffected. In the third scenario, there is 
no difference between planted area and harvested area but yield 
is reduced by half. Across all of these scenarios, shocks in different 
components contribute to the same amount of production loss. 
In addition, should more than one component experience a shock 
at the same time, this would collectively amplify the resultant 
production shock. Note that these scenarios presume a single 
season per year and the sum of seasonal production is additionally 
required for multi-crop systems.

× Harvestable
fraction × =Planted area

(acre)
Yield

(bushel per acre) (bushel)
Production
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under irrigated conditions (potentially due to the buffering effects of 
irrigation on yield), whereas under rain-fed conditions, shocks related 
to yield consist of most production shock co-occurrences. Looking 
across all component shocks (that is, not limited to those co-occurring 
with production shocks), we found that shocks in any individual com-
ponent are unlikely to result in production shocks (Supplementary 
Table 1). Further, we found that the presence of co-occurring shocks 
in harvestable fraction and yield is still unlikely (except for corn) to 
result in a production shock in the same year, suggesting that in many 
cases planted area may have had an important compensatory role in 
mitigating production shocks (Supplementary Table 1).

Production shock magnitude
We next quantified the magnitude of each of the detected produc-
tion shocks and decomposed the contributions of each of the three 
components. On average, yield accounted for the largest portion of 
the production shock magnitude (31–64%) across the study crops, fol-
lowed closely by planted area (22–53%) and then harvestable fraction 
(5–29%) (Fig. 3 and Supplementary Figs 3 and 4). Yield was dominant in 
explaining the magnitude of production shocks for corn (average of 59% 
across available years), cotton (49%), soybean (64%) and winter wheat 

(40%). Planted area was more important for barley (50% on average), 
sorghum (48%) and spring wheat (53%). As expected, the contribution 
of harvestable fraction shocks was larger for crops with longer grow-
ing periods (GPs), while it was smaller for crops with shorter GPs. Over 
time, we also observed changing influences of the three components 
on production shock magnitude. For instance, while harvestable frac-
tion represents a relatively small contribution to production shock 
magnitude for most crops, we saw an overall statistically significant 
increasing trend (P < 0.01) of its contribution in corn (Supplementary 
Table 2), and a fluctuating large proportion in cotton and winter wheat 
(Fig. 3). We also found a significant decreasing trend (P < 0.01) of the 
contribution of yield in cotton (Supplementary Table 2).

Links between climate indicators and agricultural 
factors
Lastly, we used random forest models to examine the associations 
between climate variables (that is, climate variability and extremes) 
(Supplementary Table 3) and anomalies in planted area, harvestable 
fraction and yield. While we expected that anomalies in these compo-
nents would largely be affected by climate variables in the same GP, we 
also considered a 1-GP lag between climate variables and planted area 
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Fig. 1 | Production shock frequency and hotspot maps for study crops. 
a, Production shock per county from 1978 to 2020. The asterisk indicates 
a statistically significant trend (two-sided P < 0.05; corn, P = 0.015; cotton, 
P = 0.009; soybean, P = 0.017). n represents the total number of shocks for the 

whole period. b, Maps of shock frequency in each county over the study period. 
The total number of counties (n) examined is included in parentheses. Values 
higher than 0.1 are displayed in red.
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to shock-related production losses. For each year for a specific crop, counties 
with production shocks were summed to represent the national production loss 
due to production shocks. Each component’s contribution to the total loss was 

then calculated using shock decomposition30. The gap years (for example,  
1979 for cotton) mean that no production shock was detected across all counties 
for that crop.
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because farmers may base their planting decisions partially on the (un)
favourability of climate conditions in the previous GP (Supplementary 
Fig. 5). We found that climate variability and extremes explain between 
32% and 50% of yield anomalies, with yields for soybean (50%), corn 
(38%) and barley (37%) having the highest associations (Fig. 4). For 
planted area anomalies, we found that climate variables explained 
between 22% (for barley) and 31% (for cotton) of their variance. We 
obtained similar results when using climate variables from the previ-
ous GP (Supplementary Fig. 5). Finally, for the harvestable fraction, we 
found that climate variables explained between 15% (spring wheat) and 
24% (soybean) of anomalies. The explanatory power of climate variables 
was highest for yield anomalies, then planted area and lastly harvest-
able fraction. The relatively low associations with harvestable fraction 
may be because the indicators for climate extremes considered in this 
study could not (due to data limitations) include variables of natural 
disasters (for example, flooding, landslides), which are presumably the 
most influential factors on harvestable fraction25 and replanting in the 
same growing season after disaster. Across all three components and 
all crops, we found that temperature-related variables ranked highest 
in importance (Supplementary Table 4). Thus, these findings suggest 
that all components of production merit consideration as avenues for 
climate adaptation, particularly with regard to temperature. We note 
that our approach, which focuses on sudden, short-term reductions 
probably does not capture the effects of longer-term, persistent climate 
extremes (for example, multi-year droughts), which can also exercise 
influence on the levels of crop production.

Discussion
The rise in climate variability, climate extremes and other disrup-
tions poses a growing threat to the stability of food supply chains. 
This is especially true for production, which has many entry points 
for environmental, economic and political disruptions5,31, now and in 
the future32–34. Responding to these growing disruptions requires a 
comprehensive view of production and the components that dictate 
its outcomes. To this end, this study provides new insights into the 
extent to which three factors—planted area, harvestable fraction and 
yield—affect production stability and the degree to which they are 
affected by climate variability and extremes. We found that planted 
area, harvestable fraction and yield all substantially influence both 
the frequency and magnitude of production shocks to varying degrees 
across crops. Considering shock frequency, shocks of area-related 

components co-occur with at least 50% of production shocks across all 
crops while yield-related shocks account for more than 31%. Although 
the effect of area-related components on production shock magni-
tude is generally lower than yield, we found large effects for certain 
crops (for example, spring wheat) that deserve particular attention. 
Further, we found that climate variability and extremes can explain 
substantial fractions of the observed variations in each of the three 
components, indicating that there is a combination of complex factors 
(both climate-related and otherwise) that can contribute to instabil-
ity in production. Together our results underline the importance of 
considering all three components to develop holistic approaches to 
improve production stability and the ability to withstand and recover 
from disruptions under ongoing climate change. Understanding the 
reasons behind the crop-to-crop differences in the relative importance 
of these three components will be an important next step of inquiry 
towards the development of adaptation strategies.

Addressing food production shocks has direct implications for 
the entire food supply chain, negatively affecting food supply stability 
and posing a threat to food security. Limited availability of food can be 
a direct consequence of a production shock. At the same time, food 
production instability can dramatically increase food prices when 
stock is limited, lowering consumer purchasing power and poten-
tially compromising human nutritional status, particularly among 
lower-income groups35,36. Sudden declines in production may also 
result in a decrease in food stocks; for instance, global grain reserves 
in 2008 fell to 18% of annual demand37, which aggravated food system 
vulnerability. Because countries are becoming more reliant on global 
food trade, production shocks are affecting not only local markets and 
consumers but also global and distant markets when shocks cascade 
through the food trade network5,38. Despite international trade increas-
ing the availability and diversity of food39,40, it also exposes people to 
external disruptions in food production, particularly in regions that 
rely heavily on imports41,42. For instance, drought and extreme heat in 
2012 caused a decline in US agricultural production that subsequently 
led to increases in global grain prices and compromised food access 
worldwide, especially for the world’s poorest people43. This growing 
interconnectivity of nations means that increasing the stability of major 
grain producing nations’ food production is a promising strategy for 
protecting global food security.

Our findings demonstrate that efforts are required in all compo-
nents to stabilize production (with an exclusive focus on yield stability 
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severely constraining the solution space) and that the stability of 
production is influenced by a variety of factors, including climate 
variability and extremes to a considerable degree. As such, holistic 
approaches that account for a variety of potential economic, political 
and environmental disruptions—and their collective influences on all 
three components of production—are necessary to truly enhance the 
stability of crop production. Yield has received the bulk of research and 
policy attention over the past few decades, with governments, inter-
national organizations and other agencies developing cultivars with 
climate-resilient traits (for example, heat tolerance) as well as practices 
to reduce the effects of environmental fluctuations on crop yields (for 
example, agricultural inputs such as irrigation and soil organic mat-
ter)23,44. But such interventions provide little opportunity for improv-
ing the stability of planted areas and harvestable fractions, which 
are influenced through entirely different mechanisms. For instance, 
planted area is determined by farmer decisions that are influenced by 
a host of factors including environmental policies (for example, the 
US Conservation Reserve Program), market demand and food prices 
(which enable farmers to select the most profitable crops year after 
year), and farmer experience in accordance with weather forecasts over 
time. Economic incentives that account for these various influences 
can help to avoid sudden shifts in planted areas from year to year. In 
addition, harvestable fraction is influenced by both extreme events 
and farmer decisions. While extreme events are difficult to predict, a 
suite of proactive actions can ameliorate their effects on harvestable 
fraction, including shifting cropping patterns, adjusting planting times 
to prevent loss of harvested area caused by environmental disruptions 
and zoning within cropland to avoid using land with a high probability 
of experiencing localized extreme events (for example, floods). Mean-
while, strategies that improve crop quality, price and market access 
could encourage harvesting and thus reduce harvestable fraction 
losses at the harvest stage.

Stabilizing food production is a growing challenge for agricultural 
development. Although governments and researchers have worked 
to increase yield stability19,45,46, focusing only on yield may miss a vari-
ety of important opportunities to stabilize production in the face of 
disruptions. This is well aligned with recent calls in the sustainability 
science community to actively design and manage response diversity 
to a growing suite of disruptions47. Our findings reveal that the relative 
importance of the different components of production varies accord-
ing to crop. Some crops are grown in a variety of locations through-
out the United States (for example, corn, winter wheat), allowing our 
approach to be applied at regional scales to tailor strategies to local 
circumstances. As such, developing strategies that employ a suite of 
interventions targeted at planted area, harvestable fraction and yield 
offers the greatest flexibility for responding to local vulnerabilities and 
a variety of potential climatic and non-climatic disruptions.

Methods
Data
We relied on United States Department of Agriculture (USDA) survey 
data for US county-level harvestable fraction, planted area, yield and 
production for seven field crops, covering 70% of the planted area in 
the United States28. Harvested area is the product of harvestable frac-
tion and planted area. We separated the two components to better 
disentangle the influence of human and environmental influences on 
area-related shocks to production, with harvestable fraction more 
affected by within-season environmental factors, and planted area 
largely influenced by farmer decisions. Our analysis was limited to 
crops with available county data that represent 60% or more of national 
production for 20 consecutive years. The study covered the years 1978 
to 2020, which are the years for which data were available across all 
study crops. It is worth noting that the data for barley did not fully meet 
our criteria for inclusion after 2014; however, we examined them in the 
interest of completeness. Data for climatic variables were derived from 

the PRISM database (https://prism.oregonstate.edu/), which provides 
high-resolution (4 km) daily and monthly mean, maximum and mini-
mum temperature, and precipitation data for the whole United States 
from 1981 to 2020. All spatial data were re-gridded to county level by 
taking an area-weighted average of the grid cells within each county. 
GP data were derived from the latest USDA survey on usual planting 
and harvesting dates in 201048. Although climate change has altered 
sowing dates and crop phenology, we used fixed crop calendars to 
calculate growing season climate indices49 because recent observed 
shifts in planting and harvesting dates have been less than 5 d per 1 °C 
warming50. Using the example of corn, we found that our results were 
not sensitive to this choice of crop calendar (Supplementary Table 5). 
GPs were then converted from dates to months to calculate climate 
variables over all months of each crop’s GP. Following Vogel et al.20, 
the climate variables calculated in our study included mean monthly 
temperature, mean monthly precipitation, maximum temperature, 
minimum temperature, warm day frequency, cold night frequency, 
maximum 5-d rainfall, diurnal temperature range, frost day frequency, 
mean 6-month Standardized Precipitation Index (SPI-6) and mean 
6-month Standardized Precipitation and Evapotranspiration Index 
(SPEI-6) (Supplementary Table 3). Climate variability is represented 
by the first two variables (temperature and precipitation); climate 
extremes are represented by the others. All county-level agricultural 
and climate variables were detrended using the singular spectrum 
analysis method in R to remove temporal trends due to technologi-
cal progress, management changes and long-term climatic changes. 
Because climate variables in particular can exhibit distinct temporal 
trends, detrending prevents the explained variance from being inflated 
as a result of the regression of two strongly trending variables. Except 
for SPEI-6 and SPI-6, which are already standardized, all variables were 
then standardized by dividing by their s.d. to enable the comparison 
of values across different locations.

Shock detection
To identify and match the shock occurrence among planted area, 
harvestable fraction, yield and production in all counties and all crops, 
we adopted an automated quantitative statistical shock detection 
method after Gephart et al.29. It is a method to capture sudden drops in 
a time series, with less sensitivity to high variable data and long-term, 
gradual fluctuations. The process of shock detection is mainly divided 
into four steps (Supplementary Fig. 6): (1) fitting the time series data 
by locally weighted scatterplot smoothing regression (red line in Sup-
plementary Fig. 6a) with a span of 2/3; (2) calculating the residuals (that 
is, the difference between the fitted and actual values; Supplementary 
Fig. 6b); (3) plotting residuals against the time-lagged residuals (that 
is, residuals of its previous year; Supplementary Fig. 6c); and (4) using 
Cook’s distance (D) to identify extreme points in the regression of 
residuals versus time-lagged residuals (Supplementary Fig. 6d). Coun-
ties with fewer than 20 data points were excluded because of their poor 
performance in shock detection. Points with Cook’s D greater than the 
4/n (n is the number of data points in a time series) were identified as 
shocks. While this shock detection method can identify both positive 
and negative deviations, we only considered production losses (that is, 
negative production anomalies). Shocks for which the corresponding 
production data either did not have a value in the previous year or had a 
value identical to the previous year were not considered because of data 
irregularities. Using this method, we identified shocks in all counties 
and all crops for each of the four agricultural variables (for example, 
planted area, harvestable fraction, yield and production).

To compare the frequency of production shocks to those in the 
three component factors, we examined whether each of the three com-
ponents also experienced shocks when a production shock occurred. 
For example, corn production in Iowa County in Wisconsin had five 
production shocks over 43 years, and three of them happened in the 
same year as harvestable fraction shocks. Then, we specified that 

http://www.nature.com/natsustain
https://prism.oregonstate.edu/


Nature Sustainability

Article https://doi.org/10.1038/s41893-023-01152-2

three harvestable fraction shocks coincide with production shocks 
(Supplementary Fig. 7). The same approach was used for shocks in 
yield and planted area. Thus, we determined the number of production 
shocks that co-occurred with planted area, harvestable fraction and 
yield shocks. It is worth noting that a production shock can occur in 
conjunction with shocks in several components, or it may not co-occur 
at all. Because the shock detection method only captures relatively 
large drops and ignores gradual fluctuations, and deals with each 
component of production independently, the two main reasons for no 
co-occurrences are (1) because the changes in the three components 
are minor but amplify one another or (2) there is high variability in 
the time series of one or more of the components and a shock is not 
statistically detectable. Note that the shock frequency evaluation of 
our study does not account for differences in the area of each county. 
Because shocks were counted by county, this may potentially mute 
the average effect of the component shocks in the counties with larger 
areas and higher production.

Shock decomposition
Based on the detected production shocks, we used a decomposition 
method30 to measure the contribution of each component to the mag-
nitude of the production shocks. Decomposition follows the index 
decomposition analysis (IDA)51 to express the overall change in an 
aggregate quantity as a sum of contributions from each of its compo-
nents. The production of each county i is the product of planted area (A),  
harvestable fraction (F) and yield (Y). We used additive decomposi-
tions in the IDA that converted the difference of national produc-
tion between two consecutive years (equation (1), difference of all 
counties between year t and t − 1) into the sum of contributions from 
each component (equation (2)), by calculating the logarithmic mean 
Divisia Index (equation (3), example for yield). This approach was  
applied to every two consecutive years to estimate the contributions 
of each component to annual national production loss caused by 
production shocks as:

△Pt = Pt−Pt−1 = ∑iY
t
i A

t
iF

t
i −∑iY

t−1
i At−1

i F t−1
i (1)

△Pt = △Y + △A + △F (2)

△Y = ∑i(P
t
i − Pt−1

i )/ (lnPt
i − lnPt−1

i ) × ln(
Yt
i

Y t−1
i

) (3)

Random forest and cross-validation
We applied a random forest machine learning algorithm to evaluate the 
correlation between each agricultural variable (for example, planted 
area, harvestable fraction, yield and production) and a suite of climate 
variables (Supplementary Table 3). Random forests is a non-parametric 
statistical method that uses decision trees to make regression or classi-
fication and is robust to overfitting52. This method has been previously 
applied in the analysis of yield or production anomalies in association 
with climate variables20,53.

The random forest model was built to examine the relationship 
between the anomalies (that is, deviations from an overall trend) of 
each agricultural variable and all climate indicators for each crop. All 
data were randomly partitioned into an 80% and 20% split for training 
and validation. Hyperparameters (that is, the number of trees to build, 
maximum depth of the tree, minimum leaf node size and number of 
features to use for splitting) used in each model were tuned based 
on a grid search approach54. To estimate and compare the variance 
explained by climate for each agricultural variable, we calculated R2 
values from cross-validated predictions. We further generated ‘variable 
importance ranks’ to assess the relative effect of the climate indicators 
on each agricultural variable for each crop.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All raw data are publicly available online. County-level harvested frac-
tion, planted area, yield and production data for the US are available at 
https://www.nass.usda.gov/Quick_Stats/Lite/index.php. Climatic data 
from the PRISM database are available at https://prism.oregonstate.
edu/. GP data are available at https://www.nass.usda.gov/Publications/
Todays_Reports/reports/fcdate10.pdf.

Code availability
The R code for shock detection was derived from Gephart et al.29 
(https://github.com/jagephart/Shock_Detection). The R code for the 
decomposition and the Python code for the random forest analysis are 
available at https://github.com/Dongyang2020/US_Shock.
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